數(shù)控技術(shù)起源于航空工業(yè)的需要,20世紀(jì)40年代后期,美國一家直升機(jī)公司提出了數(shù)控機(jī)床的初始設(shè)想,1952年美國麻省理工學(xué)院研制出三坐標(biāo)數(shù)控銑床。50年代中期這種數(shù)控銑床已用于加工飛機(jī)零件。60年代,數(shù)控系統(tǒng)和程序編制工作日益成熟和完善,數(shù)控機(jī)床已被用于各個工業(yè)部門,但航空航天工業(yè)始終是數(shù)控機(jī)床的最大用戶。一些大的航空工廠配有數(shù)百臺數(shù)控機(jī)床,其中以切削機(jī)床為主。
為了提高生產(chǎn)自動化程度,縮短編程時間和降低數(shù)控加工成本,在航空航天工業(yè)中還發(fā)展和使用了一系列先進(jìn)的數(shù)控加工技術(shù)。如計算機(jī)數(shù)控,即用小型或微型計算機(jī)代替數(shù)控系統(tǒng)中的控制器,并用存貯在計算機(jī)中的軟件執(zhí)行計算和控制功能,這種軟連接的計算機(jī)數(shù)控系統(tǒng)正在逐步取代初始態(tài)的數(shù)控系統(tǒng)。直接數(shù)控是用一臺計算機(jī)直接控制多臺數(shù)控機(jī)床,很適合于飛行器的小批量短周期生產(chǎn)。理想的控制系統(tǒng)是可連續(xù)改變加工參數(shù)的自適應(yīng)控制系統(tǒng),雖然系統(tǒng)本身很復(fù)雜,造價昂貴,但可以提高加工效率和質(zhì)量。它大體上分為主處理程序和后置處理程序。前者對程序員書寫的程序加以翻譯,算出刀具軌跡;后者把刀具軌跡編成數(shù)控機(jī)床的零件加工程序。
數(shù)控機(jī)床一開始就選定具有復(fù)雜型面的飛機(jī)零件作為加工對象,解決普通的加工方法難以解決的關(guān)鍵。數(shù)控加工的最大特點是用穿孔帶(或磁帶)控制機(jī)床進(jìn)行自動加工。由于飛機(jī)、火箭和發(fā)動機(jī)零件各有不同的特點:飛機(jī)和火箭的零、構(gòu)件尺寸大、型面復(fù)雜;發(fā)動機(jī)零、構(gòu)件尺寸小、精度高。因此飛機(jī)、火箭制造部門和發(fā)動機(jī)制造部門所選用的數(shù)控機(jī)床有所不同。在飛機(jī)和火箭制造中以采用連續(xù)控制的大型數(shù)控銑床為主,而在發(fā)動機(jī)制造中既采用連續(xù)控制的數(shù)控機(jī)床,也采用點位控制的數(shù)控機(jī)床(如數(shù)控鉆床、數(shù)控鏜床、加工中心等)。
數(shù)控加工的零件有飛機(jī)和火箭的整體壁板、大梁、蒙皮、隔框、螺旋槳以及航空發(fā)動機(jī)的機(jī)匣、軸、盤、葉片的模具型腔和液體火箭發(fā)動機(jī)燃燒室的特型腔面等。數(shù)控機(jī)床發(fā)展的初期是以連續(xù)軌跡的數(shù)控機(jī)床為主,連續(xù)軌跡控制又稱輪廓控制,要求刀具相對于零件按規(guī)定軌跡運動。以后又大力發(fā)展點位控制數(shù)控機(jī)床。點位控制是指刀具從某一點向另一點移動,只要最后能準(zhǔn)確地到達(dá)目標(biāo)而不管移動路線如何。